Physics 11

Unit 6 - Momentum and Impulse **Section 6.1: Momentum**

Every moving object has momentum, which is a measure of

how scared you should be of something coming at you			
Momentum depends on " でたの"	~		
. 1 110			velocity (m/s)
momentum		7)	= mV
What are the 12 C			
What are the units of momentum?			
<u>kgm</u>	00	N.5	(Newton seconds)

Example: A 10,000 kg train is traveling at 5 m/s east.

a) What's its momentum?

= 50,000 kgm/g east b) How fast would a 730 kg smart car need to go in order to have the same momentum?

$$5 = m\vec{v}$$

 $50,000 \, \text{kgm/s} = (730 \, \text{kg})\vec{v}$
 $50,000 = \vec{v}$
 730

68.49m/s or 246.6 km/h

When an object experiences a net force, its momentum changes. It's often useful to calculate the

change in momentum (a.k.a.
$$\triangle D$$
) $\wedge = final - initial$

$$\Delta = final - initial$$

Example: A bouncy ball strikes a wall at 32 m/s east and bounces back at 20 m/s west. Calculate Δp.

Example: A bouncy ball strikes a wall at 32 m/s earlies
$$(m=30g)$$
 $0.03 kg$

$$\Delta P = P_f - P_i$$

$$= mV_f - mV_i$$

$$= m(V_f - V_i)$$

$$= 0.03 kg(-20m/s - 32m/s)$$

$$= 0.03 kg(-52m/s)$$

$$= -1.56 kgm/s$$

1.56 kgm/s west is Ap