5.1 Acids and Bases

- · Acids and bases are very common.
- Acids and bases can be very dangerous and corrosive!
 - **NEVER** try to identify an acid or base by taste or touch!

pH Scale

- The strength of acids and bases is measured on the pH scale pH below 7 = acidic pH 7 = neutral pH above 7 = basic 0 1 2 3 4 5 6
 7 8 9 10 11 12 13 14
 - Acids Neutral Bases

 Each decrease of 1 on the pH scale indicates 10X more
 - neidie
 - For example, pH 4 is ten times more acidic than pH 5
 - pH 3 is 1000X more acidic than pH6

pH Indicators

- The pH of acids and bases cannot be determined by sight.
 - Instead, pH is measured by other chemicals called indicators,
 - or by a pH meter that measures the electrical conductivity of the solution using electrical probes to measure how solutions conduct electricity.
- pH indicators change colour based on the solution they are placed in.
 - Litmus paper is the most common indictor.
 - Two colours of litmus paper: Blue = basic (>7) and Red = acidic (<7).

Acids

- If you know a compound's chemical formula, you may be able to identify it as an acid.
 - Acids often behave like acids only when dissolved in water.
 - Therefore, acids are often written with subscript (aq) = aqueous = water
- The chemical formula of an acid usually starts with Hydrogen (H)
 - Acids with a carbon usually have the C written first.
 - $\text{HCl}_{(aq)}$ = hydrochloric acid, $\text{HNO}_{3(aq)}$ = nitric acid, $\text{CH}_3\text{COOH}_{(aq)}$ = acetic acid

Naming Acids

- Hydrogen + ...-ide =Hydro...ic acid
 - $HF_{(aq)}$ = hydrogen fluoride = hydrofluoric acid
- Hydrogen + ...-ate = ...ic acid
 - H₂CO_{3(aq)} = hydrogen carbonate = carbonic acid
- Hydrogen + ...-ite = ...ous acid
 - $H_2SO_{3(aq)}$ = hydrogen sulphite = sulphurous acid

Bases

- If you know a compound's **chemical formula**, you may be able to identify it as a **base**.
 - Bases, like acids, often behave like bases only when dissolved in water
 - Therefore, bases are often written with subscript (aq) = aqueous = water
- The chemical formula of a base usually ends with hydroxide (-OH).
- Examples of common bases: NaOH_(aq), Mg(OH)_{2(aq)}, Ca(OH)_{2(aq)}, NH₄OH_(aq)

The pH of a solution refers to the concentration of ions it has.
Square brackets are used to signify concentration, [H⁺(aq)], [OH⁻(aq)]
High [H⁺(aq)] = low pH, very acidic
High [OH⁻(aq)] = high pH, very basic
A solution cannot have BOTH high [H⁺(aq)] and [OH⁻(aq)]; they cancel each other out and form water. This process is called neutralization.
H⁺(aq) + OH⁻(aq) È H₂O()