

- J. J. Thomson's cathode ray experiment
  - "cathode rays" pass from negative electrode towards positive electrode in an evacuated tube

  - calculated mass to charge ratio for electrons by observing bending of cathode rays in electric and magnetic fields
  - proposed the plum pudding model of the atom

**Table: Hypothetical properties of the electron.** How J. J. Thomson used properties of cathode rays to hypothesize properties of the electron.

| observations                                                                                                                                                | hypothesis                                                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|
| ray properties are independent of<br>the cathode material                                                                                                   | cathode ray stuff is a component of all materials                                                              |
| cathode rays bend near magnets                                                                                                                              | magnets bend the paths of moving charged particles; maybe cathode rays are streams of moving charged particles |
| rays bend towards a positively<br>charged plate.<br>rays impart a negative charge to<br>objects they strike.                                                | cathode rays are streams of negative charges                                                                   |
| Cathode rays don't bend around<br>small obstacles,<br>cast sharp shadows,<br>can turn paddlewheels placed in<br>their path, and travel in straight<br>lines | cathode rays behave like streams of particles                                                                  |

### Probing Atomic Structure: Cathode Rays



## **Discovery of the Electron**



## **Thomson's Plum Pudding Atom**



## **Discovery of the Nucleus**



#### **Discovery of the Nucleus**

- Radioactivity
  - heavy elements are radioactive
  - o electric field resolves radiation into 3 components: alpha, beta, and gamma

 Table: hypothetical description of alpha particles based on properties of alpha radiation

| observation                                                                                                                              | hypothesis                                                                              |
|------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| alpha rays don't diffract                                                                                                                | alpha radiation is a stream of particles                                                |
| alpha rays deflect towards a negatively<br>charged plate and away from a positively<br>charged plate                                     | alpha particles have a positive charge                                                  |
| alpha rays are deflected only slightly by<br>an electric field; a cathode ray passing<br>through the same field is deflected<br>strongly | alpha particles either have<br>much lower charge or much<br>greater mass than electrons |

- scattering experiment
  - hypothesis: If the plum pudding model of the atom is correct, atoms have no concentration of mass or charge (atoms are 'soft' targets)
  - experiment to test hypothesis:
    - fire massive alpha particles at the atoms in thin metal foil
    - alpha particles should pass like bullets straight through soft plum pudding atoms
  - o observation: a few alpha particles ricocheted!
  - new hypotheses:
    - all of the positive charge and nearly all of the mass of the atom is concentrated in a tiny, incredibly dense 'nucleus', about 10<sup>-14</sup> m in diameter
    - electrons roam empty space about 10<sup>-10</sup> m across, around the nucleus

### **The Nuclear Atom**

#### Thomson's Atom

diffuse mass and charge

#### Rutherford's Atom

- concentrated mass and positive charge at the nucleus
- electrons roam empty space around the nucleus



- Composition of the Nucleus
  - o nuclei are composed of "nucleons": protons and neutrons
  - o atomic mass units
    - 1 amu (aka 1 dalton) = exactly 1/12 the mass of a carbon-12 nucleus
    - 1 dalton =  $1.67 \times 10^{-24} g$

Table: Subatomic particles important in chemistry.

| particle | symbol | charge | mass, kg                  | mass, daltons |
|----------|--------|--------|---------------------------|---------------|
| electron | e-     | -1     | 9.10953×10 <sup>-31</sup> | 0.000548      |
| proton   | p+     | +1     | 1.67265×10 <sup>-27</sup> | 1.007276      |
| neutron  | n      | 0      | 1.67495×10 <sup>-27</sup> | 1.008665      |

# **Structure of the Nucleus**

\* nuclei are composed of "nucleons": protons and neutrons

|                             | Symbol                          |               | Mass, kg                                                                                            | Mass, amu                        |  |
|-----------------------------|---------------------------------|---------------|-----------------------------------------------------------------------------------------------------|----------------------------------|--|
| electro<br>proton<br>neutro | $p^{n} e^{-}$<br>$p^{+}$<br>n n | -1<br>+1<br>0 | $\begin{array}{l} 9.10953 \ge 10^{-31} \\ 1.67265 \ge 10^{-27} \\ 1.67495 \ge 10^{-27} \end{array}$ | 0.000548<br>1.007276<br>1.008665 |  |
|                             |                                 |               |                                                                                                     |                                  |  |



## Isotopes

| ÷      | isotopes: same Z, different M  |                    |                 |                              |                              |                              |                                |                        |
|--------|--------------------------------|--------------------|-----------------|------------------------------|------------------------------|------------------------------|--------------------------------|------------------------|
| 1<br>1 | н                              | $^2_1$ H           | <sup>3</sup> ₁H | <sup>12</sup> <sub>6</sub> C | <sup>13</sup> <sub>6</sub> C | <sup>14</sup> <sub>6</sub> C | <sup>235</sup> 92 U            | <sup>238</sup> 92 U    |
| ÷      | is                             | otop               | ic abu          | indance:                     | <u># a</u><br># a            | toms of<br>toms of           | of isotope pr<br>of element pr | <u>esent</u><br>resent |
|        | _                              | na<br>isotope abur |                 | atural<br>ndano              | e                            | mass (amu                    | ı)                             |                        |
|        | carbon-12                      |                    | 98              | 98.89 %                      |                              | 12.000000                    |                                |                        |
|        |                                | carb               | on-13           | ]                            | 11%                          | )                            | 13.003354                      | Ł                      |
|        | average mass: $12.01_{11}$ amu |                    |                 |                              |                              |                              |                                |                        |