Answer on separate paper showing all work.

Consider the following equation :

$$3 I_2 + 6 F_2 \longrightarrow 2 IF_5 + L_F_2$$

- a) How many moles of LF₂ are produced by the complete reaction of 5.41 moles of fluorine?
- b) How many moles of fluorine are needed to produce 4.52 moles of IF₅?
- c) What mass of iodine is needed to react with 7.63 grams of fluorine?
- d) What mass of IF₅ is produced by the reaction of 154 grams of iodine?

2.
$$C_5H_{12} + 8O_2 \longrightarrow 5CO_2 + 6H_2O$$

- a) What mass of BOTH products (separately) are formed when 105 g of pentane (C_5H_{12}) are burned ?
- b) What mass of oxygen is needed to produce 66.0 g of water, according to the above reaction?
- c) What mass of pentane would release 107 g of CO₂?

3.
$$5C + 2SO_2 \longrightarrow CS_2 + 4CO$$

- a) What mass of carbon disulfide is produced by reacting 241 g of carbon?
- b) If we wish to produce 7.60 g of carbon disulfide, what mass of carbon should we use? What mass of sulfur dioxide should we also use? What mass of carbon monoxide would be produced as well?

4.
$$2 \text{ CuO} \longrightarrow 2 \text{ Cu} + \text{ O}_2$$

What mass of copper would result from decomposing 101 grams of cupric oxide?

5.
$$4 \text{ NH}_3 + 7 \text{ O}_2 \longrightarrow 4 \text{ NO}_2 + 6 \text{ H}_2\text{O}$$

What mass of water is produced by the reaction of 3.40 grams of ammonia according to the above reaction?

6.
$$CoCl_2 6H_2O \longrightarrow CoCl_2 + 6 H_2O$$

If you used 4.67 g of the hydrate, what mass of water would be driven off?

answers:

- 1a)
 0.902 mole
 3a)
 306 g

 b)
 13.6 moles
 b)
 5.98 g C

 c)
 25.5 g I₂
 12.8 g SO₂
- d) 89.8 g 11.2 g CO
- 2a) 321 g CO_2 4) 80.7 g 157 g $H_2\text{O}$ 5) 5.40 g
 - b) 156 g 6) 2.12 g
- c) 35.0 g