
ELECTROCHEMISTRY

	Cu wire is placed in a solution of $Zn(NO_3)_2$. ight bulb is placed into the solution.
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1) What	$Cu_{(s)} + Zn(NO_3)_{2 (aq)} \longrightarrow Zn_{(s)} + Cu(NO_3)_{2 (aq)}$ nappens to copper as it goes from reactant to product?
	became more positive (lost elections).
2) What h ions to	appened to zinc as it went from reactant to product? What do you think occurred in order for zinc become solid zinc metal?
* 3	124 became less positive (gained electrons), to become neutral
	appened to the intensity of the light bulb over time? Why do you think this occurred?
* j being t	Bulb's intensity will remain the same because the amount of e
U	mistry: looks at the MEVEM SILL of \bar{e} in a given chemical rxn.
encen och	As the e are being transferred from one species to the next, these <u>e</u> are used as a
	source of electrical energy.
an	nen we think transfer of e, we think ionic solutions, but electrochemistry happens for both ionic description.
Exa	$\frac{mple}{4 \text{ Al}_{(s)} + 3 O_{2(g)}} \xrightarrow{+3 - 2} 2 \text{ Al}_{2}O_{3(s)}$
	ionic species
*	$\frac{\text{Pach M}: \text{lost } 3\bar{\epsilon}}{\text{Pach 0}: \text{ gained } 2\bar{\epsilon}. + 2 - 2}$ $\frac{2 \text{SO}_{2(s)} + \text{O}_{2(g)}}{\text{2 SO}_{3(g)}} \longrightarrow 2 \text{SO}_{3(g)}$
*	<u>Pach 0:</u> gained 2ē. +2-2
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	* Each S. lost 2E
	
	* Each O gained 20 (The Ozig, is the oxygen that underwent reduction
I. <u>Elec</u>	etrochemical Reactions – Redox Reactions
In any _	rxn. there is a transfer of e from one species to another species.
a)	Oxidation: the of e
	Example: Fe \longrightarrow Fe ²⁺ + 2 e ⁻
b)	Reduction: (1911) of e (Deducing in 1984) in 11)
·	Reduction: gain of e (Reducing in positivity)
	$\underline{Example}: Cu^{2+} + 2\bar{\epsilon} \qquad Cu$

IV. **Balancing Redox Rxns:**

1/2 Rxn: describes only ______ part of the redox rxn., either reduction part OR oxidation part.

Balancing Redox Reactions Using 1/2 Rxn. Method

Example: Balance the following elementary redox rxn.

 $Cu^{2+}_{(aq)} + Al_{(s)} \longrightarrow Cu_{(s)} + Al^{3+}_{(aq)}$ (There is currently an unbalance in the palance it).

 $\star \underline{OX.'/z}: \mathcal{Al}_{(S)} \longrightarrow \mathcal{Al}_{(GG)}^{3+}$

* Ox.'/z: $Al_{15}) \rightarrow Al_{166}^{3+}$ * RED.'/2: $(u_{164}^{2+}) \rightarrow (u_{165}^{2+})$ * Balance the number of e by finding the LCM.* $Al_{15} \rightarrow Al_{166}^{3+} + 3\bar{e}] \times 2:$ * Because total amount of e lost = tot

2N -> 2N(ag) + SE 3(u2+ +6€ -> 3(u6)

Net Redox Equation: $3 Cu^{2+} + 2 Al$ $\longrightarrow 3 Cu + 2 Al^{3+}$ (Net charge on both sides is NOTE: The <u>Met</u> redox equation should <u>NOT</u> have any e.

TOTAL e LOST = TOTAL e GAINED

Some Terminology:

$$3 Cu^{2+} + 2 Al \longrightarrow 3 Cu + 2 Al^{3+}$$

Cu²⁺: was reduced. Therefore, it acts an oxidizing agent.

Al: was oxidized. Therefore, it acts as a reducing agent

occur.
1) Balancing ½ Reactions in Acidic Solutions:
Example: Balance the ½ rxn: NO N ₂ O (in acidic solution)
a) Balance all the species EXCEPT H or O
$2 NO \rightarrow N_2O$
b) Balance the OXYGEN by adding $\frac{1}{2}$ molecules – (Acceptable because the rxn. is occurring in an aqueous environment.)
$2NO \rightarrow N_2O + H_2O$
c) Balance the HYDROGEN last by adding H ⁺ ions (Comes from the <u>QCAIC</u> SEE.
$2H^{+} + 2NO \rightarrow N_{2}O + H_{2}O$
d) $Add = 0$ to balance the <u>Charges</u> .
$\frac{2H^{+} + 2NO + 2\bar{e}}{Q} \longrightarrow N_{2}O + H_{2}O \qquad (Reduction '/z)$ <u>Exercise</u> : Balance the ½ rxn.: $Cr_{2}O_{7}^{2-} \longrightarrow Cr^{3+}$ in acid
6ē + 14H+ + Cr207(ag) -> 2 Cr3+ 7H20 +12
14H+ (ag) + C1207(ag) + GE -> 2013+ + 7H2O(1)
NOTE: Redox eg s. will often only show the NiE, meaning only those species that undergo rxn.
2) <u>Balancing ½ Rxns. in Basic Solⁿs</u> :
Example: Balance the ½ rxn: Cl ₂ ClO ₃ in basic solution
a) Balance all other atoms except H and O.
$Cl_2 \rightarrow 2Cl_{03}$

b) Balance OXIJOIN atoms FIRST! using H20 :

6H2O + Cl2 → 2ClO3 + 12H+ €

NOTE: Most redox rxns. require either an <u>acidic</u> or <u>basic</u> environment in order to

d)	Add the SAMO	# of OH as H to _	both	sides of the reaction.
	Where there is both	OH and H^{+} on the so	ame side of the	equation, H_2O is formed.

$$\frac{\text{Cl}_2 + 120\text{H}^-}{-12} \rightarrow 2 \frac{\text{Cl}_3}{-2} + 6 \frac{\text{H}_20}{-2}$$

3) Balancing Redox Equations Using ½ Rxn. Method

Example: Os +
$$IO_3$$
 OsO₄ + I_2 (acid solution)

$$\star 0_5 \longrightarrow 0_5 0_4. \qquad \qquad \vdots \qquad I_{2}$$

$$\frac{\text{LCMB[8]10=40]}}{+ 4\times (12H^{+} + 2IO_{3}^{-} + 10\bar{e} \rightarrow I_{2} + 6H_{2}O)}$$

RedOx.
$$5.05 + 8.10^{-3} + 8.11^{+} \rightarrow 5.05.04 + 4.1_{2} + 4.11_{2}$$

Example: ClO_{2} ClO_{3} + Cl (basic solution)

$$ClO_2^- \rightarrow ClO_3^- \rightarrow Cl^-$$

$$20H + H_2O + ClO_2^- \rightarrow ClO_3^- + 2H^+ + .20H^- | 40H + 4H^+ + ClO_2^- \rightarrow Cl^- + 2H_2O + 40H^- + 4E^- | 2H_2O +$$

Redox:
$$300_2 \rightarrow 200_3 + 00^-$$

Balancing Redox Reactions Using Oxidation Number Method В.

Example: $HClO_2 + \Gamma^1$ $Cl_2 + HIO$ (acidic solution)

1) Assign Ox. # to all atoms..

- agent. 1 * Total amount of \bar{e} lost \hat{f} gained must be 6. (LCM of $2 \stackrel{?}{+} 3$)

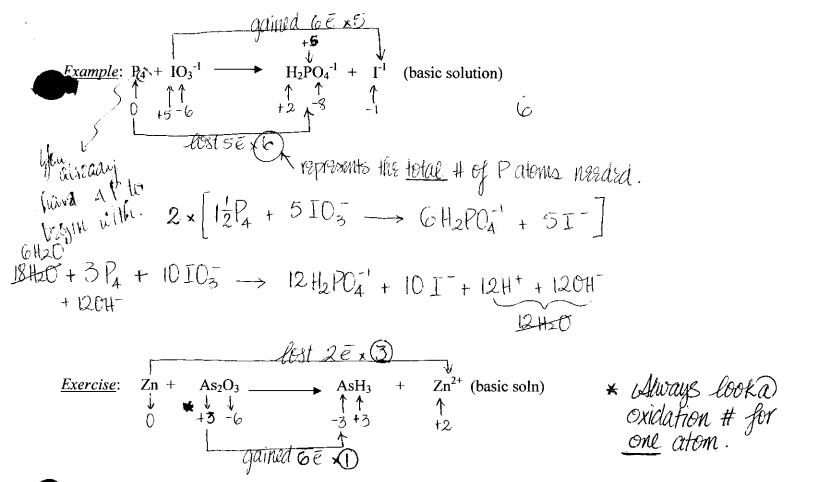
 HClO₂ + \bar{I} \longrightarrow Cl₂ + HIO

 1 Post $z\bar{e} \times 3$ \longrightarrow
- Balance the O and H as learned previously. 2)

$$3H^{+} + 2HClO_{2} + 3I^{-} \rightarrow Cl_{2} + 3HIO + H_{2}O$$

$$Net Charge = Q \qquad Net Charge = Q (V)$$

CHECK:


Exercise: $MnO_4^2 + SO_3^{2-}$ MnO₂ + SO_4^{2-} (basic solution)

Answer: $2 \text{ MnO}_4^- + 3 \text{ SO}_3^{2-} + \text{H}_2\text{O} \longrightarrow 2 \text{ MnO}_2 + 3 \text{ SO}_4^{2-} + 2 \text{OH}_3^-$

Exercise: $U^{4+} + MnO_4^- \longrightarrow Mn^{2+} + UO_2^{2+}$ (acid solution)

Answer:
2450

Answer: 4 5 U $^{4+}$ + 2 MnO $_{4}^{-1}$
 2Mn^{2+} + 5 UO $_{2}^{2+}$ + 4 H $^{+}$
 $2 \text{H}_{2}\text{O}$ + 5 U $^{4+}$ + 2 MnO $_{4-}$
 4Mn^{2+} + 5 UO $_{2}^{2+}$ + 4 H $^{+}$
 4Mn^{2+} + 5 UO $_{2}^{2+}$ + 4 H $^{+}$
 4Mn^{2+} + 7 -8 +2 +6 -4

$$2(32n + \frac{1}{2}A8_2O_3 \rightarrow ASH_3 + 32n^{24})$$

$$120H^{-} + 12H^{+} + 6Zn + A_{3} + A$$

1) Disproportionation Redox Rxn. Rewrite the equation:

$$P_4 + P_4 \longrightarrow H_2\dot{P}O_2^- + PH_3$$

2) All other steps follow the usual rules for assigning oxidation number and balancing.

Reduction Potential – Redox Reactions and Energy V.

One of the most practical uses for electrochemical reactions is to harness the SILIMA. produced by the reaction in the form of 9/90 hours.

There are two types of redox reactions:

- a) Statement reactions those that proceed without external without external energetic help. These reactions <u>pilauce</u> electricity.
- b) Mon- Spantaneous, reactions Those that do not react spontaneously. These 12611118 energy in order to react.

A. Determining Whether a Reaction is Spontaneous:

- Redox rxns. which are SAMMIGUS generate SHOUSE. This electricity is measured in WELFS.

 The greater the amount of voltage PROUCES by a reaction, the more SAMMIGUS that reaction is. (ie. The more (+) the E⁰ is, the more spontaneous the reaction).

Standard Reduction Potential (E⁰):

- The reference species upon which all other species are compared to is the reduction of H⁺ ion in solution.

$$2 H^{+}_{(aq)} + e^{-} \leftrightarrow H_{2(g)} (E^{0} = 0.00V)$$

- Conditions of a standard system: (a) Each reacting specie is $/\mathcal{M}$ in solution. (b) Temperature is 25° C

 - (c) Pressure is Latin
- **NOTE:** The more willing a species is willing to be reduced against H₂ gas, (the stronger it is as an Oxidising agent), the more (+) the E^0 .

Example:
$$F_{2(g)} + 2e^- \leftrightarrow 2F_{(aq)}$$
 (E⁰ = +2.87V)

$$K^{+}_{(aq)} + e^{-} \leftrightarrow K_{(s)}$$
 $(E^{0} = -2.93V)$

Example: Will 1M nitric acid dissolve gold metal to form 1M Au³⁺ ions in solution?

Example: Are the following reactions spontaneous?

Example: Are the following reactions spontaneous?

(a)
$$AI^{3+}(aq) + Mg(s) \rightarrow AI(s) + Mg^{2+}(aq)$$

$$\star M^{3+}(aq) + 3\bar{e} = M_{(5)} : -1.66V$$

$$\star Mg'(s) = Mg'(s) + 2\bar{e} + 2.37V$$

$$\star Mg'(s) = Mg'(s) + 2\bar{e} + 2.37V$$

$$\star Mg'(s) = Mg'(s) + 2\bar{e} + 2.37V$$

$$\star Mg'(s) + \bar{e} = Ma_{(5)} + 2\bar{e} + 2.37V$$

$$\star Ma^{+}(aq) + Cu(s) \rightarrow Cu^{1+}(aq) + Na(s) + 2\bar{e} + 2.37V$$

$$\star Ma^{+}(aq) + Cu(s) \rightarrow Cu^{1+}(aq) + Na(s) + 2\bar{e} + 2.37V$$

$$\star Ma^{+}(aq) + \bar{e} = Ma_{(5)} + 2\bar{e} + 2.37V$$

$$\star Ma^{+}(aq) + \bar{e} = Ma_{(5)} + 2\bar{e} + 2.37V$$

$$\star Ma^{+}(aq) + Na(s) + 2\bar{e} + 2.37V$$

$$\star Ma^{+}(aq) +$$

The Activity/Reactivity Series: shows the extent to which ______ wish to ______ wish to ______ :

LiK CaMg AlPb

Most willing to Oxidize

Least Willing to Oxidize

B. Non-Standard Conditions:

Example:
$$2 \text{ Al}_{(s)} + 3 \text{ Mn}^{2+}_{(aq)} \rightarrow 2 \text{ Al}^{3+}_{(aq)} + 3 \text{ Mn}_{(s)}$$
 (E⁰ = 0.48V)

Determine whether the E⁰ will increase or decrease with the following changes:

(a)
$$[Al^{3+}] = 2.0M$$
 $[Mn^{2+}] = 1.0M$

*
$$Al_{(5)} = 2kl_{(ab)}^{3+} + 3\bar{e} : + 1.66V$$

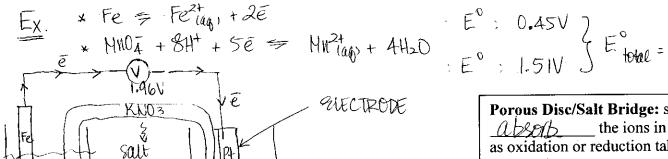
This causes rxn to shift left, thereby lowering the amount of \bar{e} produced: E will decrease. [Mn²⁺] = 3.00M

(b)
$$[Al^{3+}] = 1.0M$$
 $[Mn^{2+}] = 3.00M$

$$* Mn^{2+}_{(ag)} + 2\bar{e} = Mn_{(s)} - 1.19V$$

* $MN^{2+}_{(ab)} + 2\bar{e} = MN_{(s)} - 1.19V$ } $\uparrow [Mn^{2+}]$ will result in more $\uparrow Mn^{2+}_{(ab)} + 2\bar{e} = MN_{(s)} - 1.19V$ } $\uparrow [Mn^{2+}]$ will require more \bar{e} to be liberated from $Al_{(s)} = 1.19V$ This results in increased E bring produced.

VI. **Spontaneous Redox Reactions:**


bridge

Spontaneous reactions produce <u>Alechical</u> energy to run objects.

Electrochemical Cells (Galvanic Cells or Voltaic Cells):

MWO.

CATHODE

ANODE

* Hass of Feiss solid driveases

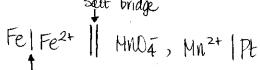
over time.

talanced out in

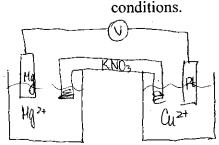
* Excess Fe2+ are charge by the NO3-from the salt bridge. 2MMDa + 5Fe + 16H+ -> 5Fe2+ + 2MM2+ + 8H2O

* Pt electrode is inest : its only job is to hold \(\bar{e}\) for MNO_4 (ap) to reduce onto.

Porous Disc/Salt Bridge: serves to absolb the ions in solution as oxidation or reduction takes place. The porous nature serves as redox to occur.


Electrode: site for ions to reduce onto. The electrode may or may not be 1800AVE

Anode: site of oxidation. e travels Away from anode.


Cathode: site of reduction.

Line Notation:

Short hand notation for any electrochemical reaction:

phase boundary Example: Draw an electrochemical cell for the redox reaction between Mg and Cu²⁺ under standard

$$Mg_{15} = Mg^{2+} + 2\bar{e} + \bar{e} + \bar{e} + 2\bar{e} + 2\bar$$

A. Applications of Electrochemical Cells:

The Breathalyzer:

$$3 C2H5OH + 2 Cr2O72- + 16 H+ \longrightarrow 3 CH3COOH + 4 Cr3+ + 11 H2O$$
orange-yellow dark green

- Blood vessels lie closely to the alveoli in the lungs.
- Exchange of alcohol vapours from the blood vessels to the lungs is easily accomplished.
- The higher the content of alcohol, the greener the breathalyzer instrument shows!

2) Car Batteries:

Anode:
$$Pb_{(s)} + HSO_4$$
 \longrightarrow $PbSO_{4(s)} + H^+ + 2e$

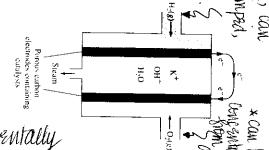
Cathode: $PbO_{2(s)} + HSO_4 + 3H^+ + 2e$ \longrightarrow $PbSO_{4(s)} + 2H_2O$

Overall: $Pb_{(s)} + PbO_2 + 2H^+ + 2HSO_4$ \longrightarrow $2 PbSO_4 + 2H_2O$

- Spontaneously reacting to produce electrical energy.
- to accumulate onto the 2 _ gleched's s (Pb and PbO₂).
- To recharge the battery, an electrical source is applied to the battery, forcing e back onto the solid PbSO₄, thus forcing the rxn. W 1919185
 - The battery still eventually dies because the PbSO₄ flakes off over time, falling into the acidic solution.

3) Alkaline Dry Cell (Duracel or Energizer):

Anode:
$$Zn_{(s)} + 2OH^{-}$$
 $ZnO_{(s)} + H_2O + 2\overline{e}$


Cathode: $2 \text{ MnO}_{2(s)} + \text{H}_2\text{O} + 2\tilde{\epsilon} \longrightarrow \text{Mn}_2\text{O}_3 + 2\text{OH}^-$

- Electrolyte (catalyst) is <u>bank</u> therefore, alkaline name.
- Zn is the liner on the battery wall
- MnO₂ is a Payt2 that fills the battery's shell –
- Electrode for the MnO₂ is a Carbon Rod (Electrode is inert purposely, so that it doesn't react with Zn. Carbon's job is to house reduced 2/2/2000)

Fuel Cells:

$$\frac{\text{lathode}}{\text{lathode}}: O_{2(g)} + 2 H_2 O + 4 \overline{e} \longrightarrow 4 OH^{-}$$

Overall:
$$2 H_{2(g)} + O_{2(g)} \longrightarrow 2 H_2O_{(l)}$$

undergoing a redox

H-SO₁

VENENSE IX Anode (lead

grid filled with

spongy lead)

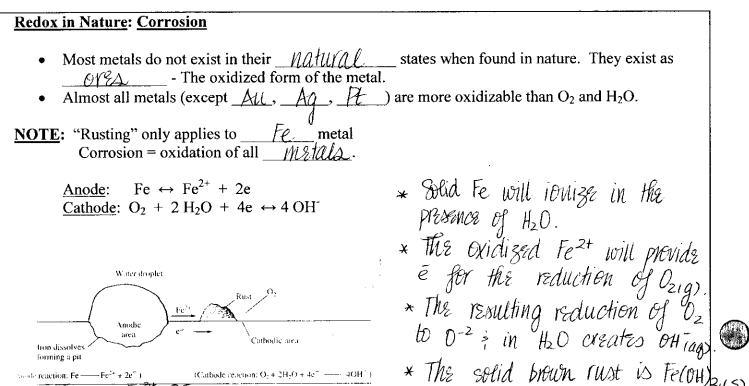
Cathode (lead

grid filled with

spongy PbO₂)

Anode

Cathode


(zine inner case)

ALTERNATUR

providing for the

is Environmentally

ters -> Fe

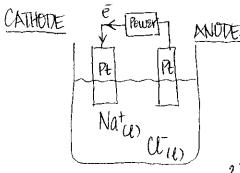
VII. Non-spontaneous Redox Reactions

Reactions that require energy ______ in order to proceed.

Electrolytic Cells:

Electrolysis: the process of supplying electrical energy to induce a redox rxn. to happen. Electro-potential is <u>Negative</u>.

Example: $Cu + Zn^{2+} \rightarrow Cu^{2+} + Zn$


There are 3 types of electrolytic cells:

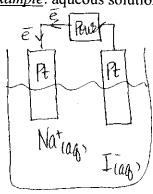
(melted)

- b) Type 2: ______ solution. Electrodes are interference
- c) Type 3: _______ solutions Electrodes may be _______ Pactive_____

a) *Type 1*:

Example: molten NaCl and platinum electrodes

(CATHOTE): $Na_{(e)}^{\dagger} + \bar{e} = Na_{(s)}$ } $E_{\text{theoretical}}^{\circ} - (2Cl_{(e)}) = Cl_{2(g)}^{\dagger} + 2\bar{e}$ } $E_{\text{theoretical}}^{\circ} - 2Cl_{(e)}^{\dagger} = Cl_{2(g)}^{\dagger} + 2\bar{e}$

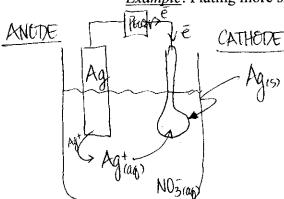

- 1) No separation of reactants is required because we are not harnessing the e as in a spontaneous rxn.

 2) No salt bridge required because no circuit is needed Also, no balancing of excess ions are required.

Example: aqueous solution of NaI. Electrode is platinum

CATHOTE

b) *Type 2*:



Possible Reactants: Natago, , I (ago, , H2O(e)

Type 3: Electroplating (Plating):

Method is used to force a metal to <u>VEAUCE</u> onto another surface.

Example: Plating more silver onto a tarnished silver spoon.

* Itssible Reactants: Agiago, Agiso, H2O.

Agis, Spoon (ANOTE): $Agis> = Agiap + \bar{e}$ $E^{\circ} = 0.0 \text{V}$ (CATHODE): $Agiap + \bar{e} = Agis)$ $E^{\circ} = 0.0 \text{V}$

Other examples include making "tin" cans, "chrome" mags/rims.

A. Factors Affecting Yield in an Electrolytic Process:

- 1) The amount of electrons or Character flowing through the system. The more charge or e running through, the more reduction can oceur. Amount of charge is measured in (AUCM)8
- 2) The charge on the ion. The more e needed for the redox reaction, the LONGED it will take for the reaction to be fully completed.

Example: $Ag^+ + e^- \longrightarrow Ag_{(s)}$ + 2e ◆

* Reduction of F_2 will take longer to occur than Ag+ because reduction of F_2 requires $2\overline{\epsilon}$.

Impount of \underline{fine} given for the electrolysis to occur.