Section 2.4: Acceleration

	Vector or Scalar?	Symbol and Units	Description/Formula
Distance	Scalar	d m	How far something traveled along the path it took.
Displacement	Vector	đ m	Change in position.Straight arrow from start to finish.
Speed	Scalar	υ m/s	$v_{av} = \frac{d}{\Delta t}$
Velocity	Vector	ν m/s	$\hat{v}_{av} = \frac{\hat{d}}{\Delta t}$
Acceleration	Vector	ā m/5 ²	$\vec{\Delta}_{ov} = \frac{\Delta \vec{v}}{\Delta +}$

^{*}The formulas above are for *average* speed/velocity/acceleration or for when speed/velocity/acceleration is CONSTANT.

We describe acceleration as the <u>rate of change</u> of velocity.

We describe velocity as the rate of change in position

Example:

-starts at 0 velocity

A car starts from rest and accelerates at 15 m/s² for 3 s. What is its top speed?

 $\vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$

Day Dt = DT

(15)(3) = 47

45m15=AT

Remember Δ =final-initial

以=34-20

V+=45 m/s

The Direction of Acceleration:

The direction of acceleration is the direction of the push or pull on the object.

All vectors have direction. If an object moves along a straight line (i.e. <u>ID Kinem Otics</u>) then we say a vector's direction is

- · Positive if it's right up north east or forward.
- · Negative if it's 1eft down south west or backward.

Example: Fill out the table below by putting + or – in each box.

	Velocity	Acceleration
A car sitting at a stop light hits the gas	+	+
From rest, you back out of your driveway		
A car hits the brakes and comes to a stop	+	
You drop a rock off a cliff	_	
You throw a rock straight up (while the rock is in your hand)	+	1
You throw a rock straight up (after the rock leaves your hand)	+	

A swimmer swims the length of a pool at a constant speed) then quickly turns around and swims back.

A swimmer swims the length of a pool at a constant speed) then quickly turns around and swims back.

A swimmer swims the length of a pool at a constant speed) then quickly turns around and swims back.

A skydiver jumps from a plane, speeds up to terminal velocity falls for a while, then pulls the chute and slows down.