

Unit 5 - Forces Section 5.1: Newton's Universal Law of Gravitation

Gravity is a force that attracts every pair of objects in the universe. Its strength depends on their

we can calculate how strong this force is (i.e. its Magnitude) using...

We can calculate how strong this force is (i.e. its Magnitude) using...

Mass of one mass of other object universal gravitation

(6.67x10-1 Nm²)

May object (6.67x10-1 Nm²)

Mewton's Universal Law of Gravitation

Example: An astronaut at an altitude of 5000 km experiences a force of 215 N? What is the astronaut's mass?

mass of Earth
5.98 x 10²⁴ kg
Radius of Earth
6.38 x 10⁶ m

$$F_{g} = \frac{m_{1} m_{2} Gr}{r^{2}}$$

$$\frac{F_{q} r^{2}}{m_{2} Gr} = m_{1}$$

$$\frac{(215)(5 \times 10^{6} + 6.38 \times 10^{6})^{2}}{(5.96 \times 10^{24})(6.67 \times 10^{-11})^{-1}} = 69.8 \text{ kg} = m_{1}$$

Example: Three objects, each with a mass of 10 kg, are placed in a straight line as shown below. What is the net force on the centre object due to the other two?

$$= \frac{(10)(10)(6.67 \times 10^{-11})}{(0.4)^2} - \frac{(0)(10)(6.67 \times 10^{-11})}{(0.5)^2}$$

$$= 1.5 \times 10^{-8} \, \text{N right}$$

24

4

- 73 ali

10